1	(i)	grad AB = $\frac{7-1}{4}$ oe or 3	M1		
		4-2 y-7 = their m (x - 4) or y-1 = their m (x - 2)	M1	or use of $y =$ their gradient $x + c$ with coords of A or B	allow step methods used
				or M2 for $\frac{y-1}{7-1} = \frac{x-2}{4-2}$ o.e.	or eg M1 for $7 = 4m + c$ and $1 = 2m + c$ then M1 for correctly finding one of <i>m</i> and <i>c</i>
		y = 3x - 5 oe	A1	accept equivalents if simplified eg $3x - y = 5$ allow B3 for correct equivalent	allow A1 for $c = -5$ oe if $y = 3x + c$ oe already seen
				anow by for concerted www	B2 for eg $y - 1 = 3(x - 2)$
			[3]		
1	(ii)	showing grad BC = $\frac{2-1}{-1-2} = -\frac{1}{3}$ oe	B1	may be calculation or showing on diagram	
		and $-1/3 \times 3 = -1$ or grad BC is neg	B1	may be earned for statement / use of	eg allow 2 nd B1 for statement grad BC
		reciprocal of grad AB, [so 90°]		$m_1m_2 = -1$ oe, even if first B1 not earned	= -1/3 with no working if first B1 not earned
				for B1+B1, must be fully correct, with 3 as gradient in (i)	
		$\frac{\text{or}}{\text{for finding AC or AC}^2}$ independently of AB and BC	or B1	working needed such as $AC^2 = 5^2 + 5^2 = 50$	condone any confusion between squares and square roots etc for first B1 and for two M1s eg AC = $25 + 25$ = $\sqrt{50}$
		for correctly showing $AC^2 = BC^2 + AB^2$ oe	B1	working needed using correct notation such as $BC^2 = 3^2 + 1^2 = 10$; $AB^2 = 6^2 + 2^2 = 40, 40$ + 10 = 50 [hence A ² = BC ² + AB ²]	accept eg 3 and 1 shown on diagram and $BC^2 = 10$ etc
					0 for eg $\sqrt{40} + \sqrt{10} = \sqrt{50}$

	or finding equation of line through C perpendicular to AB ($y = -\frac{1}{3}x + \frac{5}{3}$ oe)	or B1		eg B1 for $x + 3y = 5$
	showing B is on this line either by substitution or finding intersection of this line with AB	B1		or B1 for finding the equation of the line through B and C as $y = -\frac{1}{3}x + \frac{5}{3}$ oe and B1 for using condition for perp lines and showing true
	BC = $\sqrt{3^2 + 1^2}$ or $\sqrt{10}$ AB= $\sqrt{6^2 + 2^2}$ or $\sqrt{40}$ or $2\sqrt{10}$	M1 M1	both these Ms may be earned earlier if Pythag used to show angle $ABC = 90^{\circ}$, but are for BC and AB, not BC^2 and AB^2	for both M1s accept unsimplified equivs
	Area = 10 [square units] <u>or</u> area under AC – area under AB – area under BC	A1 <u>or</u> M1	must be simplified to 10	mark equivalently for other valid methods, eg trapezium – 2 triangles method, omitting below $y = 1$: $\frac{1}{2} \times 7 \times 5 - (\frac{1}{2} \times 3 \times 1 + \frac{1}{2} \times 2 \times 6)$ = 17.5 - (1.5 + 6)
	at least two of 22.5, 8 and 4.5 oe Area = 10 [square units]	M1 A1 [5]	must be simplified to 10	

1	(iii)	(1.5, 4.5) oe	2	B1 each coordinate	
		angle in semicircle oe is a right-angle [so B is on circle] and must mention AC as diameter or D as centre [hence A, B, C all same distance from D]	E1 [3]	or '[since b = 90°,] ABC are three vertices of a rectangle. D is the midpoint of one diagonal <u>and</u> so D is the centre of the rectangle <u>or</u> the diagonals of a rectangle are equal and bisect each other, [hence DA=DB=DC] or condone showing that line from D to mid point of AB is perp to AB, so DBA is isos [hence DB = DA = DC] [or equiv using DBC]	E0 for just stating 'D is midpt of the hypotenuse of a rt angled triangle ABC so DAB is isos' without showing that it is isw eg wrong calcn of radius NB some wrongly asserting that ABC is isos

2	7	2	condone $y = 7$ or (5, 7);	condone omission of brackets;
			M1 for $\frac{k - (-5)}{5 - 1} = 3$ or other correct use of gradient eg triangle with 4 across, 12 up	or M1 for correct method for eqn of line and $x = 5$ subst in their eqn and evaluated to find <i>k</i> ; or M1 for both of $y - k = 3(x - 5)$ oe and $y - (-5) = 3(x - 1)$ oe

3	y = 5x + 3	3	M2 for $y - 13 = 5(x - 2)$ oe	or M1 for $y - b = 5(x - a)$ with wrong a, b or for $y - 13 = \text{their } 5(x - 3)$ or
			or M1 for $y = 5x [+k] [k = \text{letter or} number other than -4] and M1 for 13 = their m \times 2 + k$	y - 15 = their 5(x - 2) be M0 for first M if $-1/5$ used as gradient even if 5 seen first; second M still available if earned

4	(7/11, 24/11) oe www	3	B2 for one coord correct; condone not expressed as coords, isw
			or M1 for subst or elimination; eg x + $2(5x - 1) = 5$ oe; condone one error
			SC2 for mixed fractions and decimals eg (3.5/5.5, 12/5.5)

5 (i) $\frac{1}{2}$ $x \times (x + 2 + 3x + 6)$ oe x(4x + 8) = 140 oe and given ans $x^2 + 2x - 35 = 0$ obtained correctly with at least one further interim step	M1 A1	correct statement of area of trap; may be rectangle \pm triangle, or two triangles	eg $2x(x + 2) + \frac{1}{2} \times 2x \times (2x + 4)$ condone missing brackets for M1 ; condone also for A1 if expansion is treated as if they were there
(ii) [AB 1 www	3	or B2 for $x = [-7 \text{ or}] 5$ cao www or for AB = 21 or -15 or M1 for $(x + 7)(x - 5) [= 0]$ or formula or completing square used eg $(x + 1)^2 -$ 36 [= 0]; condone one error eg factors with sign wrong or which give two terms correct when expanded or M1 for showing f(5) = 0 without stating $x = 5$	may be done in (i) if not here – allow the marks if seen in either part of the image – some candidates are omitting the request in (i) and going straight to solving the equation (in which case give 0 [not NR] for (i), but annotate when the image appears again in (ii)) 5 on its own or $AB = 5$ with no working scores 0; we need to see $x = 5$

6	(i) rad AB = $\frac{0-6}{1-(-1)}$ oe [= -3] isw grad BC = $\frac{0-4}{1-13}$ oe [= 1/3] isw	M1 M1	for full marks, it should be clear that grads are independently obtained	eg grads of –3 and 1/3 without earlier working earn M1M0
	product of grads = -1 [so lines perp] stated or shown numerically	M1	or 'one grad is neg. reciprocal of other' or M1 for length of one side (or square of it) M1 for length of other two sides (or their squares) found independently M1 for showing or stating that Pythag holds [so triangle rt angled]	for M3, must be fully correct, with gradients evaluated at least to $-6/2$ and $-4/-12$ stage $AB^2 = 6^2 + 2^2 = 40$, $BC^2 = 4^2 + 12^2 = 160$, $AC^2 = 14^2$ $+ \ ^2 = 200$
6	 (ii) A √40 or BC = √160 ¹/₂ × √40 × √160 oe or ft their AB, BC 40 	M1 M1 A1	or M1 for one of area under AC (=70), under AB (=6) under BC (=24) (accept unsimplified) and M1 for their trap. – two triangles	allow M1 for $\sqrt{(1-(-1))^2 + (6-0)^2}$ or for $\sqrt{(13-1)^2 + (4-0)^2}$ or for rectangle – 3 triangles method, $[6 \times 14 - \frac{1}{2}(2)(6) - \frac{1}{2}(4)(12) - \frac{1}{2}(2)(14)$ =84 – 6 – 24 – 14] M1 for two of the 4 areas correct and M1 for the subtraction

6	(iii) le subtended by diameter = 90° soi	B1	or angle at centre = twice angle at circumf = $2 \times 90 = 180$ soi or showing BM = AM or CM, where M is midpt of AC; or showing that BM = $\frac{1}{2}$ AC	condone 'AB and BC are perpendicular' or 'ABC is right angled triangle' provided no spurious extra reasoning
	mid point M of AC = (6, 5)	B2	allow if seen in circle equation ; M1 for correct working seen for both coords	allow M1 had intent for $AC = \sqrt{200}$ followed by r
	rad of circle = $\frac{1}{2}\sqrt{14^2} + 2^2 \left[=\right]\frac{1}{2}\sqrt{200}$ oe or equiv using r^2 $(x-a)^2 + (y-b)^2 = r^2$ seen or $(x - \text{their } 6)^2 + (y - \text{their } 5)^2 = k$ used, with $k > 0$	M1	or $5^2 + 5^2$; may be implied by correct equation for circle or by correct method for AM, BM or CM ft their M	allow M1 bod intent for AC = $\sqrt{200}$ followed by $r = \sqrt{100}$
	$(x-6)^2 + (y-5)^2 = 50$ cao	A1	or $x^2 + y^2 - 12x - 10y + 11 = 0$	must be simplified (no surds)
6	(iv) (11, 10)	1		

7 (i) $(0, -2)$ or 'crosses y-axis at -2 ' oe	B1		condone $y = -2$
isw			
$(\pm 2^{\frac{1}{4}}, 0)$ oe isw	B2	or [when $y = 0$], $[x =] \pm 2^{\frac{1}{4}}$ or $\pm \sqrt{\sqrt{2}}$ or $\pm \sqrt[4]{2}$ isw B1 for one root correct	

7	(ii) $[y =] x^2 = x^4 - 2$ oe and rearrangement to $x^4 - x^2 - 2 [= 0]$ or $y^2 - y - 2 [=0]$	M1		
	$(x^2 - 2)(x^2 + 1) = 0$ oe in y	M1	or formula or completing square; condone one error; condone replacement of x^2 by another letter or by x for 2 nd M1 (but not the 3 rd M1)	if completing square, and haven't arranged to zero, can earn first M1 as well for an attempt such as $(x^2 - 0.5)^2 = 2.25$
	$x^{2} = 2$ [or -1] or $y = 2$ or -1 or ft or $x = \sqrt{2}$ or $x = -\sqrt{2}$ or ft	M1	dep on 2^{nd} M1 ; allow inclusion of correct complex roots; M0 if any incorrect roots are included for x^2 or x	NB for second and third M: M0 for $x^2 - 2 = 0$ or $x^2 = 2$ oe straight from quartic eqn – some candidates probably thinking $x^4 - x^2$ simplifies to x^2 ; last two marks for roots are available as B marks
	$(\sqrt{2}, 2)$ and $(-\sqrt{2}, 2)$; with no other intersections given	B2	or B1 for one of these two intersections (even if extra intersections given) or for $x = \pm \sqrt{2}$ (and no other roots) or for $y =$ 2 (and no other roots), marking to candidates' advantage	some candidates having several attempts at solving this equation – mark the best in this particular case

7	(iii) from $x^4 - kx^2 - 2 = 0$:		Allow x^2 replaced by other letters or x or from $y^2 - k^2y - 2k^2 = 0$	[alt methods: may use completing square to show similarly, or comment that at $x = 0$ the quadratic is
				above the quartic and that as $x \to \infty$, $x^4 - 2 > kx^2$ for all
	$k^2 + 8 > 0$ oe	B1	$k^4 + 8k^2 > 0$ oe	condone lack of brackets in $(-k)^2$
	$k + \sqrt{k^2 + 8} \ge 0$ for all k	B 1	$k^{2} + \sqrt{k^{4} + 8k^{2}} > 0$ oe for all k	
	[so there is a positive root for x^2 and hence real root for x and so intersection]		[so there is a positive root for <i>y</i> and hence real root for <i>x</i> and so intersection]	
			if B0B0 , allow SC1 for $\frac{k \pm \sqrt{k^2 + 8}}{2}$ or	
			$\frac{k^2 \pm \sqrt{k^4 + 8k^2}}{2}$ obtained [need not be	
			simplified]	

8	$y = 3x + c \text{ or } y - y_1 = 3(x - x_1)$	M1	allow M1 for 3 clearly stated/ used as gradient of required line
	y - 5 = their $m(x - 4)$ o.e.	M1	or (4, 5) subst in their $y = mx + c$; allow M1 for $y - 5 = m(x - 4)$ o.e.
	y = 3x - 7 or simplified equiv.	A1	condone $y = 3x + c$ and $c = -7$ or B3 www