1	(i)		$\operatorname{grad} \mathrm{AB}=\frac{7-1}{4-2}$ oe or 3 $y-7=$ their $m(x-4)$ or $y-1=$ their $m(x-2)$ $y=3 x-5 \text { ое }$	M1 M1 A1 [3]	or use of $y=$ their gradient $x+c$ with coords of A or B or M2 for $\frac{y-1}{7-1}=\frac{x-2}{4-2}$ o.e. accept equivalents if simplified eg $3 x-y=5$ allow B3 for correct eqn www	allow step methods used or eg M1 for $7=4 m+c$ and $1=2 m+$ c then M1 for correctly finding one of m and c allow A1 for $c=-5$ oe if $y=3 x+c$ oe already seen B2 for eg $y-1=3(x-2)$
1	(ii)		showing grad $\mathrm{BC}=\frac{2-1}{-1-2}=-\frac{1}{3}$ oe and $-1 / 3 \times 3=-1$ or grad BC is neg reciprocal of grad AB , [so 90°] or for finding $A C$ or $A C^{2}$ independently of $A B$ and BC for correctly showing $\mathrm{AC}^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2}$ oe	B1 B1 $\frac{\mathrm{or}}{\mathrm{~B} 1}$ B1	may be calculation or showing on diagram may be earned for statement / use of $m_{1} m_{2}=-1$ oe, even if first B1 not earned for $\mathrm{B} 1+\mathrm{B} 1$, must be fully correct, with 3 as gradient in (i) working needed such as $\mathrm{AC}^{2}=5^{2}+5^{2}=50$ working needed using correct notation such as $\mathrm{BC}^{2}=3^{2}+1^{2}=10 ; \mathrm{AB}^{2}=6^{2}+2^{2}=40,40$ $+10=50$ [hence $\mathrm{A}^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2}$]	eg allow $2^{\text {nd }} \mathrm{B} 1$ for statement grad BC $=-1 / 3$ with no working if first B1 not earned condone any confusion between squares and square roots etc for first B1 and for two M1s eg AC $=25+25$ $=\sqrt{50}$ accept eg 3 and 1 shown on diagram and $\mathrm{BC}^{2}=10$ etc 0 for eg $\sqrt{40}+\sqrt{10}=\sqrt{50}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& (iii) \& \begin{tabular}{l}
(1.5, 4.5) oe \\
angle in semicircle oe is a right-angle [so B is on circle] and must mention AC as diameter or D as centre \\
[hence A, B, C all same distance from D]
\end{tabular} \& 2
E1

[3] \& \begin{tabular}{l}
B1 each coordinate \\
or '[since $\mathrm{b}=90^{\circ}$,] ABC are three vertices of a rectangle. D is the midpoint of one diagonal and so D is the centre of the rectangle or the diagonals of a rectangle are equal and bisect each other, [hence $\mathrm{DA}=\mathrm{DB}=\mathrm{DC}$] \\
or condone showing that line from D to mid point of $A B$ is perp to $A B$, so $D B A$ is isos [hence $\mathrm{DB}=\mathrm{DA}=\mathrm{DC}$] [or equiv using DBC]

 \&

E0 for just stating ' D is midpt of the hypotenuse of a rt angled triangle ABC so DAB is isos' without showing that it is \\
isw eg wrong calcn of radius \\
NB some wrongly asserting that ABC is isos
\end{tabular} \\

\hline
\end{tabular}

2	7	$\mathbf{2}$	condone $y=7$ or (5, 7); $\mathbf{M 1}$ for $\frac{k-(-5)}{5-1}=3$ or other correct use of gradient eg triangle with 4 across, 12 up	condone omission of brackets; or M1 for correct method for eqn of line and $x=5$ subst in their eqn and evaluated to find $k ;$ or M1 for both of $y-k=3(x-5)$ oe and $y-(-5)=3(x-1)$ oe

3	$y=5 x+3$	$\mathbf{3}$	M2 for $y-13=5(x-2)$ oe or $\mathbf{M 1}$ for $y=5 x[+k][k=$ letter or number other than -4$]$ and $\mathbf{M 1}$ for $13=$ their $m \times 2+k$	or $\mathbf{M 1}$ for $y-b=5(x-a)$ with wrong a, b or for $y-13=$ their $5(x-2)$ oe
M0 for first M if $-1 / 5$ used as gradient even if 5 seen				
first; second M still available if earned				

4	(7/11, 24/11) oe www	$\mathbf{3}$	B2 for one coord correct; condone not expressed as coords, isw or M1 for subst or elimination; eg $x+$ $2(5 x-1)=5$ oe; condone one error SC2 for mixed fractions and decimals eg (3.5/5.5, 12/5.5)	

5	(i) $1 / 2 \quad x \times(x+2+3 x+6)$ oe $x(4 x+8)=140$ oe and given ans $x^{2}+2 x-35=0$ obtained correctly with at least one further interim step	M1 A1	correct statement of area of trap; may be rectangle \pm triangle, or two triangles	$\operatorname{eg} 2 x(x+2)+1 / 2 \times 2 x \times(2 x+4)$ condone missing brackets for M1; condone also for A1 if expansion is treated as if they were there
	(ii) [AB 1 Www	3	or $\mathbf{B 2}$ for $x=[-7$ or] 5 cao www or for $\mathrm{AB}=21$ or -15 or M1 for $(x+7)(x-5)$ [$=0$]or formula or completing square used eg $(x+1)^{2}-$ 36 [$=0$]; condone one error eg factors with sign wrong or which give two terms correct when expanded or M1 for showing $\mathrm{f}(5)=0$ without stating $x=5$	may be done in (i) if not here - allow the marks if seen in either part of the image - some candidates are omitting the request in (i) and going straight to solving the equation (in which case give 0 [not NR] for (i), but annotate when the image appears again in (ii)) 5 on its own or $\mathrm{AB}=5$ with no working scores 0 ; we need to see $x=5$

6	(i) $\operatorname{rad} \mathrm{AB}=\frac{0-6}{1-(-1)}$ oe $[=-3]$ isw $\operatorname{grad} B C=\frac{0-4}{1-13}$ oe $[=1 / 3]$ isw product of grads $=-1$ [so lines perp] stated or shown numerically	M1 M1 M1	for full marks, it should be clear that grads are independently obtained or 'one grad is neg. reciprocal of other' or M1 for length of one side (or square of it) M1 for length of other two sides (or their squares) found independently M1 for showing or stating that Pythag holds [so triangle rt angled]	eg grads of -3 and $1 / 3$ without earlier working earn M1M0 for M3, must be fully correct, with gradients evaluated at least to $-6 / 2$ and $-4 /-12$ stage $\begin{aligned} & \mathrm{AB}^{2}=6^{2}+2^{2}=40, \mathrm{BC}^{2}=4^{2}+12^{2}=160, \mathrm{AC}^{2}=14^{2} \\ & +\quad 2=200 \end{aligned}$
6	(ii) $\mathrm{A} \quad \sqrt{ } 40$ or $\mathrm{BC}=\sqrt{ } 160$ $1 / 2 \times \sqrt{ } 40 \times \sqrt{ } 160$ oe or ft their AB, BC 40	M1 M1 A1	or M1 for one of area under AC (=70), under $\mathrm{AB}(=6)$ under $\mathrm{BC}(=24)$ (accept unsimplified) and M1 for their trap. two triangles	allow M1 for $\sqrt{(1-(-1))^{2}+(6-0)^{2}}$ or for $\sqrt{(13-1)^{2}+(4-0)^{2}}$ or for rectangle - 3 triangles method, $\begin{aligned} & {\left[6 \times 14-\frac{1}{2}(2)(6)-\frac{1}{2}(4)(12)-\frac{1}{2}(2)(14)\right.} \\ & =84-6-24-14] \end{aligned}$ M1 for two of the 4 areas correct and M1 for the subtraction

6	(iii) le subtended by diameter = 90° soi mid point M of $\mathrm{AC}=(6,5)$ rad of circle $=\frac{1}{2} \sqrt{14^{2}+2^{2}}[=] \frac{1}{2} \sqrt{200}$ oe or equiv using r^{2} $(x-a)^{2}+(y-b)^{2}=r^{2}$ seen or $(x-\text { their } 6)^{2}+(y-\text { their } 5)^{2}=k$ used, with $k>0$ $(x-6)^{2}+(y-5)^{2}=50 \text { cao }$	B1 B2 M1 M1 A1	or angle at centre $=$ twice angle at circumf $=2 \times 90=180$ soi or showing $\mathrm{BM}=\mathrm{AM}$ or CM , where M is midpt of AC ; or showing that $\mathrm{BM}=$ $1 / 2 \mathrm{AC}$ allow if seen in circle equation ; M1 for correct working seen for both coords accept unsimplified; or eg $r^{2}=7^{2}+1^{2}$ or $5^{2}+5^{2}$; may be implied by correct equation for circle or by correct method for AM, BM or CM ft their M or $x^{2}+y^{2}-12 x-10 y+11=0$	condone ' AB and BC are perpendicular' or ' ABC is right angled triangle’ provided no spurious extra reasoning allow $\mathbf{M 1}$ bod intent for $\mathrm{AC}=\sqrt{200}$ followed by $r=$ $\sqrt{100}$ must be simplified (no surds)
6	(iv) (11, 10)	1		

7	(i) $(0,-2)$ or 'crosses y-axis at -2 ' oe isw $\left(\pm 2^{\frac{1}{4}}, 0\right)$ oe isw	B1		condone $y=-2$
B2	or $[$ when $y=0]$, $[x=] \pm 2^{\frac{1}{4}}$ or $\pm \sqrt{\sqrt{2}}$ or $\pm \sqrt[4]{2}$ isw B1 for one root correct			

7	(ii) $[y=] x^{2}=x^{4}-2$ oe and rearrangement to $\begin{aligned} & x^{4}-x^{2}-2[=0] \text { or } y^{2}-y-2[=0] \\ & \left(x^{2}-2\right)\left(x^{2}+1\right)=0 \text { oe in } y \end{aligned}$ $x^{2}=2$ [or -1] or $y=2$ or -1 or ft or $x=\sqrt{2}$ or $x=-\sqrt{2}$ or ft $(\sqrt{2}, 2)$ and $(-\sqrt{2}, 2)$; with no other intersections given	M1 M1 M1 B2	or formula or completing square; condone one error; condone replacement of x^{2} by another letter or by x for $2^{\text {nd }}$ M1 (but not the $3^{\text {rd }}$ M1) dep on $2^{\text {nd }} \mathbf{M 1}$; allow inclusion of correct complex roots; M0 if any incorrect roots are included for x^{2} or x or $\mathbf{B 1}$ for one of these two intersections (even if extra intersections given) or for $x= \pm \sqrt{2}$ (and no other roots) or for $y=$ 2 (and no other roots), marking to candidates' advantage	if completing square, and haven't arranged to zero, can earn first M1 as well for an attempt such as $\left(x^{2}-0.5\right)^{2}=2.25$ NB for second and third M: M0 for $x^{2}-2=0$ or $x^{2}=2$ oe straight from quartic eqn - some candidates probably thinking $x^{4}-x^{2}$ simplifies to x^{2}; last two marks for roots are available as B marks some candidates having several attempts at solving this equation - mark the best in this particular case

7	(iii) from $x^{4}-k x^{2}-2$ [= 0]: $k^{2}+8>0$ oe $k+\sqrt{k^{2}+8} \geq 0$ for all k [so there is a positive root for x^{2} and hence real root for x and so intersection]	B1 B1	Allow x^{2} replaced by other letters or x or from $y^{2}-k^{2} y-2 k^{2}[=0]$ $k^{4}+8 k^{2}>0$ ое $k^{2}+\sqrt{k^{4}+8 k^{2}}>0$ oe for all k [so there is a positive root for y and hence real root for x and so intersection] if B0B0, allow SC1 for $\frac{k \pm \sqrt{k^{2}+8}}{2}$ or $\frac{k^{2} \pm \sqrt{k^{4}+8 k^{2}}}{2}$ obtained [need not be simplified]	[alt methods: may use completing square to show similarly, or comment that at $x=0$ the quadratic is above the quartic and that as $x \rightarrow \infty, x^{4}-2>k x^{2}$ for all k] condone lack of brackets in $(-k)^{2}$

$\mathbf{8}$	$y=3 x+c$ or $y-y_{1}=3\left(x-x_{1}\right)$ $y-5=$ their $m(x-4)$ o.e. $y=3 x-7$ or simplified equiv.	M1	allow M1 for 3 clearly stated/ used as gradient of required line
A1	or $(4,5)$ subst in their $y=m x+c ;$ allow M1 for $y-5=m(x-4)$ o.e.		
condone $y=3 x+c$ and $c=-7$ or $\mathbf{B 3}$ www			

